Thursday, December 26, 2019

Radio resource management in relay enhanced ofdma based networks - Free Essay Example

Sample details Pages: 29 Words: 8556 Downloads: 6 Date added: 2017/06/26 Category Statistics Essay Did you like this example? 1 Introduction The convenience and popularity of wireless technology has now extended into multimedia communications, where it poses a unique challenge for transmitting high rate voice, image, and data signals simultaneously, synchronously, and virtually error-free . That challenge is currently being met through Orthogonal Frequency Division Multiplexing (OFDM), an interface protocol that divides incoming data streams into sub-streams with overlapping frequencies that can then be transmitted in parallel over orthogonal subcarriers [2,3]. To allow multiple accesses in OFDM , Orthogonal Frequency Division Multiple Access (OFDMA) was introduced. Don’t waste time! Our writers will create an original "Radio resource management in relay enhanced ofdma based networks" essay for you Create order Relaying techniques, along with OFDMA, are used to achieve high data rate and high spectral efficiency. 1.1 Orthogonal Frequency Division Multiple Access OFDMA, an interface protocol combining features of OFDM and frequency division multiple access (FDMA)., was developed to move OFDM technology from a fixed-access wireless system to a true cellular system with mobility with same underlying technology, but more flexibility was defined in the operation of the system [1,8]. In OFDMA, subcarriers are grouped into larger units, referred to as sub-channels, and these sub-channels are further grouped into bursts which can be allocated to wireless users [4]. 1.2 Relay-Enhanced Networks In cellular systems, a way to achieve remarkable increase in data rate, but without claiming for more bandwidth, is to shrink cell sizes, however, with smaller cells more base stations (BSs) are needed to cover a same area due to which deployment and networking of new BSs acquire significant costs [5]. An alternative solution to this problem is to deploy smart relay stations (RSs), which can communication with each other and with BSs through wireless connections reducing systems cost. A relay station (RS), also called repeater or multi-hop station, is a radio system that helps to improve coverage and capacity of a base station (BS) and the resulting networks employing relay stations are sometimes called cooperative networks [6]. 1.3 Technological Requirement The continuously evolving wireless multimedia services push the telecommunication industries to set a very high data rate requirement for next generation mobile communication systems. As spectrum resource becomes very scarce and expensive, how to utilize this resource wisely to fulfil high quality user experiences is a very challenging research topic. Orthogonal frequency-division multiple access (OFDMA)-based RRM schemes together with relaying techniques allocate different portions of radio resources to different users in both the frequency and time domains and offers a promising technology for providing ubiquitous high-data-rate coverage with comparatively low cost than deploying multiple base stations [5]. Although wireless services are the demand of future due to their mobility and low cost infrastructure but along with this they suffer serious channel impairments. In particular, the channel suffers from frequency selective fading and distance dependent fading (i.e., large-scale fading) [1, 8]. While frequency selective fading results in inter-symbol-interference (ISI), large-scale fading attenuates the transmitted signal below a level at which it can be correctly decoded. Orthogonal Frequency-Division Multiple Access (OFDMA) relay-enhanced cellular network, the integration of multi-hop relaying with OFDMA infrastructure, has become one of the most promising solutions for next-generation wireless communications. 1.3.1 Frequency Selective Fading In wireless communications, the transmitted signal is typically reaching the receiver through multiple propagation paths (reflections from buildings, etc.), each having a different relative delay and amplitude. This is called multipath propagation and causes different parts of the transmitted signal spectrum to be attenuated differently, which is known as frequency-selective fading. In addition to this, due to the mobility of transmitter and/or receiver or some other time-varying characteristics of the transmission environment, the principal characteristics of the wireless channel change in time which results in time-varying fading of the received signal [9]. 1.3.2 Large Scale Fading Large scale fading is explained by the gradual loss of received signal power (since it propagates in all directions) with transmitter-receiver (T-R) separation distance. These phenomenonss cause attenuation in the signal and decrease in its power. To overcome this we use diversity and multi-hop relaying. 1.3.3 Diversity Diversity refers to a method for improving the reliability of a message signal by using two or morecommunication channelswith different characteristics. Diversity plays an important role in combatingfadingandco-channel interferenceand avoidingerror bursts. It is based on the fact that individual channels experience different levels of fading and interference. Multiple versions of the same signal may be transmitted and/or received and combined in the receiver [10]. 1.4 Proposed Simulation Model We developed a simulation model in which each user-pair is allocated dynamically a pair of relay and subcarrier in order to maximize its achievable sum-rate while satisfying the minimum rate requirement. The algorithm and the results of the simulation model are given in chapter 4. 1.5 Objectives The objective of our project is to have a detail overview of the literature regarding Orthogonal Frequency Division Multiple Access (OFDMA), Radio Resource Management (RRM) and Relaying techniques. After literature review we developed a simulation framework in which we will try to use minimum resources to get maximum throughput by using dynamic resource allocation. 1.6 Tools For the design and implementation of proposed Algorithm, we have used the following tools MATLAB Smart Draw Corel Draw 1.7 Overview Chapter 2 contains the literature review. It explains the basic principles of OFDMA, Radio Resource Management (RRM) and the relaying techniques. Chapter 3 explains the implementation of OFDM generation and reception that how an OFDM signal is generated and transmitted through the channel and how it is recovered at the receiver. Chapter 4 could be considered as the main part of thesis. It focuses on the simulation framework and the code. We have followed the paper Subcarrier Allocation for multiuser two-way OFDMA Relay networks with Fairness Constraints. In this section we have tried to implement the Dynamic Resource Allocation algorithm in order to achieve the maximum sum rate. Results are also discussed at the end of the end of the chapter. 2 Literature Review Introduction: First section of this Chapter gives a brief overview about OFDMA.OFDMA basically is the combination of Orthogonal Frequency Division Multiplexing (OFDM) and Frequency Division Multiplexing Access (FDMA).OFDMA provides high data rates even through multipath fading channels. In order to understand OFDMA, we must have brief introduction to Modulation, Multiple Access, Propagation mechanisms, its effects and its impairments while using OFDMA. 2.1 Modulation Modulation is the method of mapping data with change in carrier phase, amplitude, frequency or the combination [11]. There are two types of modulation techniques named as Single Carrier Modulation (SCM) Transmission Technique or Multicarrier Modulation (MCM) Transmission Technique. [12] Single Carrier Modulation (SCM) In single carrier transmission modulation (SCM) transmission, information is modulated using adjustment of frequency, phase and amplitude of a single carrier [12]. Multi Carrier Modulation (MCM) In multicarrier modulation transmission, input bit stream is split into several parallel bit streams then each bit stream simultaneously modulates with several sub-carriers (SCs) [12]. 2.2 Multiplexing Multiplexing is the method of sharing bandwidth and resources with other data channels. Multiplexing is sending multiple signals or streams of information on a carrier at the same time in the form of a single, complex signal and then recovering the separate signals at the receiving end [13]. 2.2.1 Analog Transmission In analog transmission, signals are multiplexed using frequency division multiplexing (FDM), in which the carrier bandwidth is divided into sub channels of different frequency widths,and each signal is carried at the same time in parallel. 2.2.2 Digital Transmission In digital transmission, signals are commonly multiplexed using time-division multiplexing (TDM), in which the multiple signals are carried over the same channel in alternating time slots. 2.2.3 Need for OFDMA General wireless cellular systems are multi-users systems. We have limited radio resources as limited bandwidth and limited number of channels. The radio resources must be shared among multiple users. So OFDM is a better choice in this case. OFDM is the combination of modulation and multiplexing. It may be a modulation technique if we analyze the relation between input and output signals. It may be a multiplexing technique if we analyze the output signal which is the linear sum of modulated signal. In OFDM the signal is firstly split into sub channels, modulated and then re-multiplexed to create OFDM carrier. The spacing between carriers is such that they are orthogonal to one another. Therefore there is no need of guard band between carriers. In this way we are saving the bandwidth and utilizing our resources efficiently. 2.3 Radio Propagation Mechanisms There are 3 propagation mechanisms: Reflection, Diffraction and Scattering. These 3 phenomenon cause distortion in radio signal which give rise to propagation losses and fading in signals [14]. 2.3.1 Reflection Reflection occurs when a propagating Electro-Magnetic (EM) wave impinges upon an object which has very large dimensions as compared to the wavelength of the propagating wave. Reflections occur from the surface of the earth and from buildings and walls. 2.3.2 Diffraction When the radio path between the transmitter and receiver is obstructed by a surface that has sharp irregularities (edges), diffraction occurs. The secondary waves resulting from the obstructing surface are present throughout the space and even behind the obstacle, giving rise to a bending of waves around the obstacle, even when a line-of-sight path does not exist between transmitter and receiver. At high frequencies, diffraction, like reflection, depends on the geometry of the object, as well as the amplitude, phase and polarization of the incident wave at the point of diffraction. 2.3.3 Scattering When the medium through which the wave travels consists of objects with dimensions that are small compared to the wavelength, and where the number of obstacles per unit volume is large. Scattered waves are produced by rough surfaces, small objects or by other irregularities in the channel. In practice, foliage, street signs and lamp posts produce scattering in a mobile radio communications system. 2.4 Effects of Radio Propagation Mechanisms The three basic propagation mechanisms namely reflection, diffraction and scattering as we have explained above affect on the signal as it passes through the channel. These three radio propagation phenomena can usually be distinguished as large-scale path loss, shadowing and multipath fading [14][15]. 2.4.1 Path Loss Path Lossis the attenuation occurring by an electromagnetic wave in transit from a transmitter to a receiver in a telecommunication system. In simple words, it governs the deterministic attenuation power depending only upon the distance between two communicating entities. It is considered as large scale fading because it does not change rapidly. 2.4.2 Shadowing Shadowingis the result of movement of transmitter, receiver or any channel component referred to as (obstacles). Shadowing is a statistical parameter. Shadowing follows a log-normal distribution about the values governed by path loss. Although shadowing depends heavily upon the channel conditions and density of obstacles in the channel, it is also normally considered a large scale fading component alongside path loss. 2.4.3 Multipath Fading Multipath Fadingis the result of multiple propagation paths which are created by reflection, diffraction and scattering. When channel has multiple paths. Each of the paths created due to these mechanisms may have its characteristic power, delay and phase. So receiver will be receiving a large number of replicas of initially transmitted signal at each instant of time. The summation of these signals at receiver may cause constructive or destructive interferences depending upon the delays and phases of multiple signals. Due to its fast characteristic nature, multipath fading is called small scale fading. 2.5 Orthogonal Frequency Division Multiplexing (OFDM) Orthogonal Frequency Division Multiplexing (OFDM) is an efficient multicarrier modulation that is robust to multi-path radio channel impairments [15]. Now-a-days it is widely accepted that OFDM is the most promising scheme in future high data-rate broadband wireless communication systems. OFDM is a special case of MCM transmission. In OFDM, high data rate input bit stream or data is first converted into several parallel bit stream, than each low rate bit stream is modulated with subcarrier. The several subcarriers are closely spaced. However being orthogonal they do not interfere with each other. 2.5.1 Orthognality Signals are orthogonal if they are mutually independent of each other. Orthogonality is a property that allows multiple information signals to be transmitted perfectly over a common channel and detected, without interference. Loss of orthogonality results in blurring between these information signals and degradation in communications. Many common multiplexing schemes are inherently orthogonal. The term OFDM has been reserved for a special form of FDM. The subcarriers in an OFDM signal are spaced as close as is theoretically possible while maintain orthogonality between them.In FDM there needs a guard band between channels to avoid interference between channels. The addition of guard band between channels greatly reduces the spectral efficiency. In OFDM, it was required to arrange sub carriers in such a way that the side band of each sub carrier overlap and signal is received without interference. The sub-carriers (SCs) must be orthogonal to each other, which eliminates the guard band and improves the spectral efficiency . 2.5.2 Conditions of orthogonality 2.5.2.1 Orthogonal Vectors Vectors A and B are two different vectors, they are said to be orthogonal if their dot product is zero 2.6 OFDM GENERATION AND RECEPTION OFDM signals are typically generated digitally due to the complexity of implementation in the analog domain. The transmission side is used to transmit digital data by mapping the subcarrier amplitude and phase. It then transforms this spectral representation of the data into the time domain using an Inverse Discrete Fourier Transform (IDFT) but due to much more computational efficiency in Inverse Fast Fourier Transform (IFFT), IFFT is used in all practical systems. The receiver side performs the reverse operations of the transmission side, mixing the RF signal to base band for processing, and then a Fast Fourier Transform (FFT) is employed to analyze the signal in the frequency domain. The demodulation of the frequency domain signal is then performed in order to obtain the transmitted digital data. The IFFT and the FFT are complementary function and the most suitable term depends on whether the signal is being recovered or transmitted but the cases where the signal is independent of this distinction then these terms can be used interchangeably [15]. 2.6.1 OFDM Block Diagram 2.6.2 Implementation of OFDM Block Diagram 2.6.2.1 Serial to Parallel Conversion: In an OFDM system, each channel can be broken down into number of sub-carriers. The use of sub-carriers can help to increase the spectral efficiency but requires additional processing by the transmitter and receiver which is necessary to convert a serial bit stream into several parallel bit streams to be divided among the individual carriers. This makes the processing faster as well as is used for mapping symbols on sub-carriers. 2.6.2.2 Modulation of Data: Once the bit stream has been divided among the individual sub-carriers by the use of serial to parallel converter, each sub-carrier is modulated using 16 QAM scheme as if it was an individual channel before all channels are combined back together and transmitted as a whole. 2.6.2.3 Inverse Fourier Transform: The role of the IFFT is to modulate each sub-channel onto the appropriate carrier thus after the required spectrum is worked out, an inverse Fourier transform is used to find the corresponding time domain waveform. 2.6.2.4 Parallel to Serial Conversion: Once the inverse Fourier transform has been done each symbol must be combined together and then transmitted as one signal. Thus, the parallel to serial conversion stage is the process of summing all sub-carriers and combining them into one signal 2.6.2.5 Channel: The OFDM signal is then transmitted over a channel with AWGN having SNR of 10 dB. 2.6.2.6 Receiver: The receiver basically does the reverse operations to the transmitter. The FFT of each symbol is taken to find the original transmitted spectrum. The phase angle of each transmission carrier is then evaluated and converted back to the data word by demodulating the received phase. The data words are then combined back to the same word size as the original data. 2.7 OFDMA in a broader perspective OFDM is a modulation scheme that allows digital data to be efficiently and reliably transmitted over a radio channel, even in multipath environments [17]. OFDM transmits data by using a large number of narrow bandwidth carriers. These carriers are regularly spaced in frequency, forming a block of spectrum. The frequency spacing and time synchronization of the carriers is chosen in such a way that the carriers are orthogonal, meaning that they do not interfere with each other. This is despite the carriers overlapping each other in the frequency domain [18]. The name OFDM is derived from the fact that the digital data is sent using many carriers, each of a different frequency (Frequency Division Multiplexing) and these carriers are orthogonal to each other [19]. 2.7.1 History of OFDMA The origins of OFDM development started in the late 1950s with the introduction of Frequency Division Multiplexing (FDM) for data communications. In 1966 Chang patented the structure of OFDM and published the concept of using orthogonal overlapping multi-tone signals for data communications. In 1971 Weinstein introduced the idea of using a Discrete Fourier Transform (DFT) for Implementation of the generation and reception of OFDM signals, eliminating the requirement for banks of analog subcarrier oscillators. This presented an opportunity for an easy implementation of OFDM, especially with the use of Fast Fourier Transforms (FFT), which are an efficient implementation of the DFT. This suggested that the easiest implementation of OFDM is with the use of Digital Signal Processing (DSP), which can implement FFT algorithms. It is only recently that the advances in integrated circuit technology have made the implementation of OFDM cost effective. The reliance on DSP prevented the wide spread use of OFDM during the early development of OFDM. It wasnt until the late 1980s that work began on the development of OFDM for commercial use, with the introduction of the Digital Audio Broadcasting (DAB) system . 2.7.2 Advantages using OFDMA There are some advantages using OFDMA. OFDM is a highly bandwidth efficient scheme because different sub-carriers are orthogonal but they are overlapping. Flexible and can be made adaptive; different modulation schemes for subcarriers, bit loading, adaptable bandwidth/data rates possible. Has excellent ICI performance because of addition of cyclic prefix. In OFDM equalization is performed in frequency domain which becomes very easy as compared to the time domain equalization. Very good at mitigating the effects of delay spread. Due to the use of many sub-carriers, the symbol duration on the sub-carriers is increased, relative to delay spread. ISI is avoided through the use of guard interval. Resistant to frequency selective fading as compared to single carrier system. Used for high data rate transmission. OFDMA provides flexibility of deployment across a variety of frequency bands with little need for modification is of paramount importance. A single frequency network can be used to provide excellent coverage and good frequency re-use. OFDMA offers frequency diversity by spreading the carriers all over the used spectrum. 2.7.3 Challenges using OFDMA These are the difficulties we have to face while using OFDMA [20][21][22], The OFDM signal suffers from a very high peak to average power ratio (PAPR) therefore it requires transmitter RF power amplifiers to be sufficiently linear in the range of high input power. Sensitive to carrier frequency offset, needs frequency offset correction in the receiver. Sensitive to oscillator phase noise, clean and stable oscillator required. The use of guard interval to mitigate ISI affects the bandwidth efficiency. OFDM is sensitive to Doppler shift frequency errors offset the receiver and if not corrected the orthogonality between the carriers is degraded. If only a few carriers are assigned to each user the resistance to selective fading will be degraded or lost. It has a relatively high sensitivity to frequency offsets as this degrades the orthogonality between the carriers. It is sensitive to phase noise on the oscillators as this degrades the orthogonaility between the carriers. 2.7.4 Comparison with CDMA in terms of benefits 2.7.4.2 CDMA Advantages: CDMA has some advantages over OFDMA [22], Not as complicated to implement as OFDM based systems. As CDMA has a wide bandwidth, it is difficult to equalise the overall spectrum significant levels of processing would be needed for this as it consists of a continuous signal and not discrete carriers. Not as easy to aggregate spectrum as for OFDM. 2.7.5 OFDMA in the Real World: UMTS, the European standard for the 3G cellular mobile communications, and IEEE 802.16, a broadband wireless access standard for metropolitan area networks (MAN), are two live examples for industrial support of OFDMA. Table 1 shows the basic parameters of these two systems. UMTS(Cellular ) IEEE IEEE 802.16 ( Wireless I IEEE 802.16 ( Wireless MAN ) System bandwidth 100kHz-1.6MHz (Flexible) 6Mhz Number of subcarriers 240 / 100kHz 2048 Subcarrier spacing 4.16kHz 3.35kHz n Subcarriers / Band-unit 24 Subcarrier/Bandslot 53 Subcarrier/Subchannel Modulation time 240 s 298 s Guard time 38 s (pre-) and 8 s (post-guard) 38 s Symbol time 288 s 340 s Resource allocation unit 1 bandslot, 1 timeslot (1 symbol) 1 Subchannel, 1 timeslot Modulation QPSK , 8-PSK QPSK, 16-QAM, 64-QAM (differential and coherent) Channel coding Convolutional (1/3, 2/3) Turbo (1/2) Opt. Outer Reed-Solomon (4/5) Frequency hopping 1 hop/burst, 876 hop/sec, 1.6MHz NA (Flexible) Max. Data throughput 11 Table 1. OFDMA system parameters in the UMTS and IEEE 802.16 standards 2.8 Radio Resource Management In second section of this chapter we will discuss radio resource management schemes, why we need them and how they improve the efficiency of the network. Radio resource management is the system level control of co-channel interference and other radio transmission characteristics in wireless communication systems. Radio resource management involves algorithms and strategies for controlling parameters such as Transmit power Sub carrier allocation Data rates Handover criteria Modulation scheme Error coding scheme, etc 2.8.1 Study of Radio Resource Management End-to-end reconfigurability has a strong impact on all aspects of the system, ranging from the terminal, to the air interface, up to the network side. Future network architectures must be flexible enough to support scalability as well as reconfigurable network elements, in order to provide the best possible resource management solutions in hand with cost effective network deployment. The ultimate aim is to increase spectrum efficiency through the use of more flexible spectrum allocation and radio resource management schemes, although suitable load balancing mechanisms are also desirable to maximize system capacity, to optimize QoS provision, and to increase spectrum efficiency. Once in place, mobile users will benefit from this by being able to access required services when and where needed, at an affordable cost. From an engineering point of view, the best possible solution can only be achieved when elements of the radio network are properly configured and suitable radio resource m anagement approaches/algorithms are applied. In other words, the efficient management of the whole reconfiguration decision process is necessary, in order to exploit the advantages provided by reconfigurability. For this purpose, future mobile radio networks must meet the challenge of providing higher quality of service through supporting increased mobility and throughput of multimedia services, even considering scarcity of spectrum resources. Although the size of frequency spectrum physically limits the capacity of radio networks, effective solutions to increase spectrum efficiency can optimize usage of available capacity. Through inspecting the needs of relevant participants in a mobile communication system, i.e., the Terminal, User, Service and Network, effective solutions can be used to define the communication configuration between the Terminal and Network, dependent on the requirements of Services demanded by Users. In other words, it is necessary to identify proper communications mechanisms between communications apparatus, based on the characteristics of users and their services. This raises further questions about how to manage traffic in heterogeneous networks in an efficient way. 2.8.2 Methods of RRM 2.8.2.1 Network based functions Admission control (AC) Load control (LC) Packet scheduler (PS) Resource Manager (RM) Admission control In the decision procedure AC will use threshold form network planning and from Interference measurements. The new connection should not impact the planned coverage and quality of existing Connections. (During the whole connection time.) AC estimates the UL and DL load increase which new connection would produce. AC uses load information from LC and PC. Load change depends on attributes of RAB: traffic and quality parameters. If UL or DL limit threshold is exceeded the RAB is not admitted. AC derives the transmitted bit rate, processing gain, Radio link initial quality parameters, target BER, BLER, Eb/No, SIR target. AC manages the bearer mapping The L1 parameters to be used during the call. AC initiates the forced call release, forced inter-frequency or intersystem handover. Load control Reason of load control Optimize the capacity of a cell and prevent overload The interference main resource criteria. LC measures continuously UL and DL interference. RRM acts based on the measurements and parameters from planning Preventive load control In normal conditions LC takes care that the network is not overloaded and remains Stable. Overload condition . LC is responsible for reducing the load and bringing the network back into operating area. Fast LC actions in BTS Lower SIR target for the uplink inner-loop PC. LC actions located in the RNC. Interact with PS and throttle back packet data traffic. Lower bit rates of RT users.(speech service or CS data). WCDMA interfrequency or GSM intersystem handover. Drop single calls in a controlled manner. 2.8.2.3 Connection based functions Handover Control (HC) Power Control (PC) Power control Uplink open loop power control. Downlink open loop power control. Power in downlink common channels. Uplink inner (closed) loop power control. Downlink inner (closed) loop power control. Outer loop power control. Power control in compressed mode. Handover Intersystem handover. Intrafrequency handover. Interfrequency handover. Intersystem handover. Hard handover (HHO). All the old radio links of an MS are released before the new radio links are established. Soft handover (SHO) SMS is simultaneously controlled by two or more cells belonging to different BTS of the same RNC or to different RNC. MS is controlled by at least two cells under one BTS. Mobile evaluated handover (MEHO) The UE mainly prepares the handover decision. The final decision is made by SRNC. Network evaluated handover (NEHO) The SRNC makes the handover decision. 2.8.3 Why we need RRM or Purpose of RRM? The rapid increase in the size of the wireless mobile community and its demands for high-speed multimedia communications stands in clear contrast to the rather limited spectrum resources that have been allocated in international agreements. Efficient spectrum or radio resource management (RRM) is of paramount importance due to these increasing demands. Purposes of RRM are as: Ensure planned coverage for each service. Ensure required connection quality. Ensure planned (low) blocking. Optimise the system usage in run time. 2.8.4 Joint Radio Resource Management (JRRM) In designing wireless systems, typical problems are encountered, such as the signal attenuation, terminal noise, fast fading due to the multipath phenomenon, shadowing, Multiple Access Interference (MAI) and other typical system related features, e.g. the mutual relation between interference strength and duration period given by link adaptation. These typical problems challenge the communication systems from using radio resources efficiently. The radio resources not only, by definition, the radio spectrum, but also realized in the real radio networks, access rights for individual mobile users, time period a mobile user being active, channelization codes, transmission power, connection mode, etc., that require the management functions being designed in different time scales. Furthermore, radio resources from different radio networks can be managed jointly in order to solve the encountered problems more effectively. The term Joint Resource Management (JRRM) is therefore generalized as: JRRM are the controlling mechanisms that support intelligent admission of calls and sessions for a set of networks or cell layers. They control the distribution of traffic, power and the variances of them, thereby aiming at an optimized usage of radio resources and maximized system capacity. JRRM mechanisms work over multiple radio networks or cell layers with the necessary support of reconfigurable/multi-mode terminals. JRRM is operated in a network which consists of several subnetworks or cell layers of a single radio network. The term subnetwork is defined in Definition I-2. The High Performance Radio Local Area Network Type 2 (H/2) as a typical WLAN RAT specified by ETSI (European Telecommunications Standards Institute) BRAN (Broadband Radio Access Networks) and UMTS/FDD specified by the 3rd Generation Partnership Project (3GPP) are two subnetworks studied in this thesis. 2.8.5 Sub-Carrier Allocation We have analyzed the Dynamic sub-carrier allocation algorithm the main of which is to allocate dynamically a pair of relay and subcarrier to each user-pair in order to minimize the achievable sum rate of each user-pair while satisfying the minimum rate requirement for every user-pair. 2.9 Relay Station and Relay Enhanced Systems A relay basically is a transceiver which creates a communication link between the source and destination [23]. It virtually can be considered as another transmitter. In third section of this chapter we will be discussing basic idea about Relay, Relay stations, Relaying and its strategies, Co-operative and non-cooperative relaying. But in order to understand these terms one must have idea about Cellular networks, their demand for coverage and capacity and the benefit of using relay station in order to increase the capacity [24]. 2.9.1 Cellular Networks Cellular networks are radio networks made up of a number of non-overlapping cells, each served by at least one base station, that cover a wide geographic area. Several frequencies are assigned to each cell, which can be reused in other cells. Cellular networks mainly consist of two parts: the radio access network or base station subsystem (BSS) and the core network, which are connected through a backhaul connection [24]. 2.9.1.1 Analog Transmission to Digital Transmission Cellular networks appeared in the 1960s and used analog communications. Second generation systems moved from analog to digital due to its many advantages. The components are cheaper, faster, smaller, and require less power. Voice quality is improved due to error correction coding. Digital systems also have higher capacity than analog systems since they can use more spectrally-efficient digital modulation and more efficient techniques to share the cellular spectrum. They can also take advantage of advanced compression techniques and voice activity factors. In addition, encryption techniques can be used to secure digital signals against eavesdropping. Digital systems can also offer data services in addition to voice, including short messaging, e-mail, Internet access, multimedia capabilities, etc [24]. 2.9.1.2 Base Station Subsystem The base station subsystem is responsible for handling traffic and signaling between the core network and the user. It consists of a network of base station transceivers (called nodes) grouped under several base station controllers (BSC or Radio Network Controllers (RNC)) which are connected to the core network. A single BSC can have tens or even hundreds of BTSs under its control. The BSC handles allocation of radio channels, is in charge of admission control, receives measurements from the mobile phones, controls handovers from BTS to BTS, etc. The BSC can route voice calls through the public switched telephone network (PSTN) or provide Internet access. It also acts as a concentrator of low capacity connections to and from the BTS into a high capacity connection to and from the core network. The Base Station is in charge of the radio interface: scrambling, modulation, scheduling, adaptative coding, link quality measurements, soft handovers, etc[24]. 2.9.2 Core Network The core network is in charge of routing and forwarding the user data, handovers between different technologies, it manages the databases with the user and terminals information, security issues, etc. The core network in cellular networks has suffered several changes over the last decade. For example, in the GSM second generation networks a new packet commuting network was added later to give support to GPRS technology which included gateways to external IP networks. Later on, with third generation networks like UMTS and its several releases, the core network was expanded to support soft switching (release 4) or multimedia transmissions (release 5 with the multimedia subsystem). Presently, the core network is evolving to an all-IP network in future generation networks [24]. 2.9.4 Coverage Area The coverage area of a cell is the expected percentage of the cells area where the received power is greater than a certain minimum, given that the user terminals require a minimum received SNR for acceptable performance. 2.9.5 Capacity Capacity refers to the theoretical maximum transmission rate that can be achieved over a wireless channel. 2.9.6 Need of using Relay Technology Presently, the amount of free spectrum is decreasing, and future networks will have to use the available bands at higher frequencies, meaning a decrease in coverage and an increase in base station density. Moreover, next generation cellular networks are expected to support different types of services including web browsing, FTP, video streaming, VoIP, online gaming, real time video, etc., therefore require even higher transmission rates. Physical layer technologies such as OFDM, smart antennas and Multiple Input Multiple Output (MIMO) systems are being designed to achieve this goal. Relay technology can be used both to increase capacity and coverage, as many papers have proved thus far [24]. 2.10 Relay A relay is a node that receives information from the source and forwards it to the destination, so it can assist in a transmission to improve performance. Relays can have many applications, like capacity enhancement, load balancing or coverage extension of cells, which is what we are interested in. SOURCE RELAY DESTINATION 2.10.1 Why to use Relay Some reasons which become the reason of deploying relays [25], Mobile stations can transmit at lower power. Transmission at higher frequencies is more vulnerable to non LOS conditions. The transmission power required for high data rates at large distances is very high Increasing the base station density is one option A relay acts as a helper node to increase coverage and throughput. Relay is connected to the base station through wireless channel. Relays are much closer to the mobile stations than the base station; hence high data rates are possible. 2.10.2 Cooperative relaying In general, every communicating system has a source node that broadcast the signal towards the multiple/helping relays in the network, which in turn re transmits the processed version towards the destination [26]. 2.10.2.1 Benefits of using Cooperative Relaying Cooperative relaying provides [27], Better BER performance due to spatial diversity Higher efficiency due to spatial multiplexing 2.10.2.2 Two methods of Cooperative Relaying There are two phases through which a signal have to move in order to reach the destination utilizing cooperative environment, Broadcasting Mode (BA) When the source broadcasts the signal towards multiple relays present in between destination and source. Multiple Access Mode (MA) When different relays transmits their data towards a single destination. This mode of transferring info from multiple relays to single destination is multiple access mode. 2.10.3 Multihop Communication Multi-hop communication occurs when data travel from the source to the destination node via more than two hops. This could be achieved without need of other costly BSs. The maximum allowed number of hops must be carefully considered (higher number of hops increases a transmission time). Multi-hop based network may also improve system performance thanks to cooperative relay technique. This is accomplished by sending information simultaneously via multiple different paths and combining the received information at the side of receiver [28]. 2.10.4 Relay Station A relay station is an intermediate station/node that passes information between terminals or other relay stations and is used to help a base station to improve its coverage and capacity. Relay station has other names such as repeater, or multi-hop station and the networks that use relay stations are sometimes called cooperative networks [29]. The notion of relay channel appeared in the late 60s. E. C. van der Meulen introduced the idea of a three-terminal communication channel consisting of a source, a destination and a relay. T. M. Cover and A. El Gamal later published a paper where they computed upper and lower bounds for the capacity of the single relay channel and give an exact expression for the Gaussian degraded case. Given the complexity of the relay channel, it hasnt been until the exhaustive research on MIMO channels over the last decade that relay networks have been on the spot again, and recently there have been many publications on the topic [24]. 2.10.4.1 Concept of Relay Figure 2.3 Relaying System RS will typically cover a region up to 300 miles in diameter and transmit at lower power level than BS. Relays do not have wired connection to backhaul. Cooperative diversity is additional advantage of relaying [25]. 2.10.4.2 Relay station vs. Base Station The primary advantage of deploying relay stations in terms of the cost is expected to come from the differences in the cost of the backhaul. When a relay station is deployed, instead of a Base Station with a wired backhaul connection, there are no direct backhaul costs. There is no cost for provisioning the wired connection, and there are no monthly charges for the backhaul. Similarly, when a relay station is deployed, instead of a Base Station with wireless backhaul, the use of a relay station eliminates the need to purchase, set up, and maintain microwave link equipment, and to purchase the rights to additional spectrum in which this equipment operates. Relay Stations are also expected to be less costly to deploy because they do not require line of sight channel conditions on the relay link, allowing greater flexibility in site selection than for a Base Stations with wireless backhaul. The idea behind a relay channel is to use the relay to create spatial diversity sending the same signal through independent fading paths. This can be done in two steps. Firstly, the source broadcasts the signal both to the relay and the destination. In the second step, the relay transmits the received signal to the destination, so the destination ends up with two different independent versions of the same signal. The way in which the relay processes and retransmits the received signal to the destination has given rise to several strategies which have been deeply analyzed in the literature [24]. 2.10.5 Relaying Strategies There are many relaying strategies; three of them are discussed below 2.10.5.1 Amplify-and-Forward (AF) This is the simplest strategy that can be used at the relay because it acts as a dummy with a constraint on the maximum power. The relay amplifies the received signal from the source and transmits it to the destination without doing any decision. The main drawback of this strategy is that the relay terminal is also amplifying the received noise to the destination. When this strategy is applied to the cooperative communication, it is able to obtain a better uncoded bit error rate (BER) than direct transmission [5]. Additionally, the outage probability of the cooperative communication is also derived, demonstrating that a diversity order of two is obtained for two cooperative users. When the relay is equipped with multiple antennas and there is channel state information (CSI) of the source-relay and relay destination links, the AF strategy can attain significant gains over the direct transmission by means of optimum linear filtering the data to be forwarded by the relay [30]. In AF strategy, the relay simply amplifies the noisy version of the signal it has received in the first step and retransmits this noisy version. The destination then combines both signals to decide the transmitted bit. More generally, AF refers to any strategy where the relay linearly transforms the received signal. Although noise is also amplified in the relay, this strategy produces two independent versions of the same signal at the destination which allow for a better detection of the information sent. It has been proved that this strategy is optimal at high SNR, achieving diversity of order two [24]. 2.10.5.2 Decode-and-Forward (DF) In DF strategies, the relay tries to detect the received information, re-encodes and retransmits the signal after detection. If detection is unsuccessful the relaying can be harmful when detecting at the destination, therefore the strategy should be implemented such that the relay only retransmits the information when detection is successful. DF requires more complex devices than AF methods, but the noise at the receiver is much lower [24]. The RS decodes the signal and performs error correction. The decoded data is encoded using the same or different codebook before transmitting to the destination. The two phases need not be of same duration [25]. 2.10.5.3 Compress-and-Forward (CF) In this case, the relay performs a non-linear transformation on the received signal and then retransmits to destination. In this way, the relay station can compress the received signal and forward it to destination without the need to decode it. Some typical examples of CF strategies are Estimate and Forward or Quantize and Forward [24]. The relay compresses the received signal by using Wyner-Ziv lossy source coding and forwards it to the destination [25]. 2.10.5.4 Relaying Techniques (Some Facts) DF performs well only when the channel quality between BS and the RS is good. Only advantage of AF is that it is computationally less intensive at the relay. CF technique performs better than direct transmission in all channel conditions even if channel between BS and RS is degraded. CF is computationally intensive. CF is not considered for Wimax relaying [31]. 2.10.6 Relay usage Scenarios These are the Relay usage scenarios created for IEEE 802.16j. 2.10.6.1 Fixed Infrastructure Fixed-infrastructure relays, like BSs, are to be deployed by the service provider in stationary areas to serve general traffic. They are intended to increase both throughput and coverage because they are likely to be placed above roof tops to allow an LOS with the BS, but this may not always be the case. This category also may include commercial relays purchased by a subscriber, which may leave and enter the network at any time [31]. Fixed Infrastructure is to improve coverage in shadow areas and increase throughput due to LOS communication [25]. 2.10.6.2 In-Building Coverage Even with the relatively small demands of voice service, current mobile phones often perform poorly inside buildings. Relays are expected to be placed both by the service provider and by the end user near the shell, or just inside, of the building to fill the coverage hole inside. This type of relay also can be deployed near tunnels or subways to provide coverage where there is otherwise none. These relays can be nomadic and likely will operate with NLOS channels. Intriguingly, they may operate on battery power and probably will have low complexity [31]. In-Building coverage scenario is to fill the coverage hole inside the building [25]. 2.10.6.3 Temporary Coverage Events where a large group of people are densely packed into a small area form a unique opportunity for relays. The multihop capability of 802.16j will enable some of the traffic generated by this dense population to be routed to BSs in adjacent cells. Near stadiums, this infrastructure can be placed by the service provider as a permanent solution. Temporary relays also can be deployed in emergencies where some BSs may have been damaged. For this reason, temporary coverage relays may be required to run on batteries and will range from small and simple to large and complex [31]. Temporary coverage is for the stadiums or gatherings of people during an event. It is also temporary replacement to a damaged relay [25]. 2.10.6.4 Coverage on Mobile Vehicle A mobile vehicle, such as a train or bus, presents unique challenges to communications engineers. Usually, there are several people located very closely together, and the vehicle is moving, sometimes very quickly, through cells. To provide reliable coverage to such users, a complex relay may be deployed on the vehicle and obviously, will be highly mobile [31]. A complex relay is required that can handle quick handoffs while providing coverage in train or bus [25]. 2.10.7 Diversity Multipaths in certain scenarios create fading in the received signal. Due to the high possibility of the multipaths and fading nature of the channel, Diversity technique is being organized which can effectively reduce that fading effects and provides much better reception at the receiver side by achieving same signal trough different channels which in turn with some appropriate combining scheme decreasing probability of BER of the signal and provides better communication result [32]. There are three ways of achieving diversity. Transmit Diversity Receive Diversity MIMO Diversity 2.10.7.1 Cooperative Diversity Cooperative diversityis a cooperative multiple antenna technique for improving or maximising total networkchannel capacitiesfor any given set of bandwidths which exploits userdiversityby decoding the combined signal of the relayed signal and the direct signal in wireless multihop networks. 2.10.7.2 Spatial Diversity Spatial diversityis one of several wirelessdiversity schemesthat use two or more antennas to improve the quality and reliability of a wireless link. Often, especially in urban and indoor environments, there is no clearline-of-sight(LOS) between transmitter and receiver. Instead the signal is reflected along multiple paths before finally being received. Multiple paths created by use of relay can be used to exploit spatial diversity. 3 OFDM Simulation and Results In this chapter, we will discuss about simulation model of OFDM transceiver developed in MATLAB and will be discussing the simulation results. 3.1 OFDM Transceiver implementation Simulation for implementation of basic OFDM transceiver is divided into three portions: OFDM Transmitter Channel OFDM Receiver 3.2 OFDM Transmitter OFDM Transmitter simulation consists of the following steps as shown is Figure 5.1. Binary Data Generation Conversion of Serial input data into Parallel format Modulation of each symbol using 16 QAM IFFT block of each modulated symbol Generation of OFDM signal by combining symbols in serial fashion 3.3 Channel Channel that we implement in simulation is AWGN with 10 dB SNR 3.4 OFDM Receiver OFDM Receiver simulation consists of the following steps as shown in Figure 5.2. Reception of Signal through channel and converting into parallel fashion FFT of each symbol QAM demodulation Parallel to Serial Conversion to recover the transmitted data 3.5 Results of Simulation Model 3.5.1 Message Signal A random Signal is generated using MATLAB built-in function binornd and is plotted as shown in Figure 5.3 Modulated Signal Each symbol is passed through the QAM modulator using qammod built-in function in MATLAB and the scatter plot is obtained as shown in figure 5.4 Signal through Channel The signal is passed through the channel which is considered as Additive White Gaussian Noise and its scatter plot is given in the Figure 5.5. Demodulation The received signal is converted into parallel format and then each symbol is demodulated using MATLAB built-in function qamdemod. The scatter plot obtained is shown in the Figure 5.6 Recovered Signal The demodulated symbols are then combined together in order to have the data transmitted data as shown in Figure 5.7 3.6 Conclusion We have analyzed that how an OFDM signal is generated typically digitally and found that with 10dB SNR signal can be recovered easily but below that SNR there are chances of error in the recovered signal 4 Implementation of Dynamic Subcarrier Allocation ( DSA) Algorithm In this chapter, we will discuss about the research paper we followed during our final year project and the implementation of the algorithm Dynamic Subcarrier Allocation (DSA) proposed in the research paper followed. 4.1 Introduction to Research Paper During our final year project we have studied many research papers and selected Subcarrier Allocation for Multiuser Two-Way OFDMA Relay Networks with Fairness Constraints by Hanmok Shin and Jae Hong Lee, Seoul National University, Korea, published at VTC. In this paper we analyzed an adaptive subcarrier allocation scheme for a multiuser two-way OFMDA relay network having multiple user-pairs and multiple relays. 4.1.1 One-way versus Two-way Half duplex relaying systems 4.1.1.1 One-way Half duplex relaying Systems In one-way half-duplex mode relays dont transmit and receive simultaneously at same time and frequency as shown in Figure 6.1. The main disadvantage of these relaying systems is a loss in throughput compared with full-duplex relaying. 4.1.1.2 Two-way Half duplex relaying Systems In two-way half-duplex relaying systems two users communicate with each other in two phases: Phase 1 Phase 1 is the Multiple Access (MA) phase in which all users transmit their information simultaneously to relays. Phase 2 Phase 2 is the Broadcast (BC) phase in which the relay amplifies the received signal and then broadcast it to all the users using same sub-carrier. Both these phases are shown in Figure 6.2. Compared with traditional one-way half-duplex relaying systems, these systems achieve higher power and spectral efficiencies by allowing simultaneous message exchange between a BS and the users [1]. In two-way half-duplex relaying both Amplify and Forward (AF) and Decode and Forward (DF) protocols can be used but AF protocol due to its simple transceiver design is more appealing in practice and is also considered in the paper followed. 4.2 Dynamic Sub-carrier Allocation (DSA ) Algorithm We have analyzed the Dynamic sub-carrier allocation algorithm the main aim of which is to allocate dynamically a pair of relay and subcarrier to each user-pair in order to maximize the achievable sum-rate of each user-pair while satisfying the minimum rate requirement for every user-pair. The algorithm is divided into three main steps given below: Step 1 In the first step, all sets and subcarrier assignment indicator variables are initialized, where the set of user-pairs, relays, and subcarriers are denoted by K , M , and N , respectively. Set: K={1,2,.,K} M = {1, 2, . . .,M} N={1,2,,N} k,m(n)= 0 Step 2 In the second step, one relay-subcarrier pair (m*,n*) which maximizes the instantaneous rate (rk,m(n)) is allocated to one user-pair for all user-pairs. for k = 1 : K do (m*,n*) = arg max rk,m(n) , m M, n N k,m*(n*) = 1 , N = N {n*}; Update rk end where rk is achievable rate of the kth user-pair. Step 3 In the third step, remaining subcarriers are allocated to the user-pairs and relays under the maximum transmit power constraints of the users and relays. while N do k*=arg min rk , k K if rk* rmin then (m*,n*) = arg max rk*,m(n) , m M, n N k*,m*(n*) = 1 , N = N {n*}; If n=1NpAk*(n)=n=1NpBk*(n)PU then K = K {k*} ; end If n=1NpRm*(n)PR then M = M {m*}; end else n* = rand (N); (k*,m*) = arg max rk,m n* , m M, k K k,m*(n*)=1, N = N { n* }; If n=1NpAk*(n)=n=1NpBk*(n)PU then K = K {k*} ; end If n=1NpRm*(n)PR then M = M {m*}; end end Update rk end Where PU and PR denote the maximum transmit power of each of users and relays, respectively. pAk(n) and pBk(n) denote the transmit power of the user Ak and Bk on the subcarrier n, respectively. 4.3 Simulation Framework and Results 4.3.1 Simulation Parameters We considered the values of parameter in our simulation framework as shown in Table 6.1 Parameter Value No. of User-pairs 8 No. of Relays 3 No. of Sub-carriers 128 Minimum rate requirement 2.5 Mbps Maximum Transmitting power of each user 100 mWatts Maximum Transmitting power of relay 3000 mWatts Table 4.1 4.3.2 Simulation Results We developed the simulation framework to implement the DSA algorithm in MATLAB by employing the above parameters and found the results as shown in Figure 6.3. Results shows that subcarriers are allocated to each user-pair unless each user-pair or each relay meets its maximum power constraint else all the subcarriers will be allocated to all the user-pairs while satisfying the minimum rate requirement for every user-pair. 5 Conclusions Future Work 5.1 Conclusion: Our work basically involved study of relaying and OFDMA technologies. We analyzed adaptive subcarrier allocation algorithm for a multiuser two-way OFDMA relay network. In the DSA algorithm, subcarriers are allocated to the user-pairs with lowest achievable rate to satisfy the minimum rate requirement .We have developed its simulation framework by assigning the subcarriers and relays to the user-pairs depending upon their transmitting powers. 5.2 Future Work: Working on OFDMA technology to enhance its role in its competitive market is of great importance due to its high data rate feature.

Wednesday, December 18, 2019

The Rwandan Genocide Began On April 6Th 1994 Culminating

The Rwandan Genocide began on April 6th 1994 culminating in the killing of an estimated 800,000 Hutus and their sympathizers. After it became apparent that the Rwandan government was not willing or able to protect it s citizens, the question became why did the international community do nothing to intervene. Rwandan citizens’ lived under the premise, that their rights are protected under UN accords and treaties. The Genocide Convention of 1948, outlined the responsibilities of the participating countries under. However, the International community did not abide by the Convention. In Article 3 of the convention, it states that it is a punishable crime to commit genocide, plan or conspire to commit genocide, incite or cause other†¦show more content†¦The UN s lack of intervention, was based mainly on economics and conflict avoidance. The UNAMIR was an understaffed peacekeeping force which was ill-equipt intentionally, to keep costs low. With that in mind, the UN simply didn t want the added expense of sending extra troops to Rwanda.[7] An example of this mindset was evident in the actions of the United States. After suffering recent losses in Somalia, the United States was not interested in being involved in another costly conflict.[8] However, as the atrocities in Rwanda escalated, the UN had no choice but to act. On May 17, 1994, the UN finally agreed on the deployment of 5,000 to Rwanda, but their departure was delayed due to arguments regarding who will pay for them.[9] The UN had a legal and moral obligation to intervene sooner. As a former colony, the presence of colonialism in a country, will impose values and rule of law onto the culture. Some would say, former colonizing nations have legal reparative obligations, to their former colony when the colony is in transition to Nationhood. There is an argument to be made as to the damage done to a culture by being colonized. Before German colonization of Rwanda, the Tutsi-Hutu were divided by socioeconomic class, not ethnicity.[10] The Tutsi reigned peacefully over theShow MoreRelatedOutline of the Rwandan Genocide2079 Words   |  9 PagesOutline of the Rwandan Genocide: Draft Introduction Rwanda is a small land-locked nation, about 26,338 square kilometres in size, bordered by Burundi, Democratic Republic of Congo, Uganda and Tanzania. Though mainly flat, the country has a large mountain range on its northwest coast – the Virunga Mountains – that are home to the famous Rwandan Mountain Gorillas. In 1994, this seemingly insignificant country put itself on the world map, but for all the wrong reasons. Over a period of just one hundredRead MoreOne Significant Change That Has Occurred in the World Between 1900 and 2005. Explain the Impact This Change Has Made on Our Lives and Why It Is an Important Change.163893 Words   |  656 Pagesdepression from the late 1860s to the 1890s, as well as the social tensions and political rivalries that generated and were in turn fed by imperialist expansionism, one cannot begin to comprehend the causes and consequences of the Great War that began in 1914. That conflict determined the contours of the twentieth century in myriad ways. On the one hand, the war set in motion transformative processes that were clearly major departures from those that defined the nineteenth-century world order

Tuesday, December 10, 2019

The Holocaust was a horrific t... free essay sample

The Holocaust was a horrific time for the Jewish people. Six million Jews were murdered, and it is difficult to reconcile why it happened. This essay will analyze the approach of a great Orthodox thinker on the Holocaust which will shed light on this dark moment in Jewish history. In his book In This I Trust, Rav Shachs devotes a chapter to the Holocaust. Rav Shachs approach comes from the theological point of view that Hashem has an accounting system. Hashem accounts for everyone, for each persons actions good and evil. Over time Hashem kept track of the good and the bad and when the Jews sinned their account became full of sins, and then Hashem punished them with the Holocaust. As Rav Shach states, God kept count of each and every sin, in a running count over hundreds of years, until the count amounted to six million Jews, and that is how the Holocaust occurred. So must a Jew believe, and if a Jew does not completely believe this, he is a heretic, and if we do not accept this as a punishment, then it is as if we dont believe in The Holy One, Blessed be He†¦ (Shach 91). If someone didnt believe that the Holocaust was a punishment then, they were considered a heretic. The fact that we think that the Holocaust was a punishment proves that we have a G-d because it means that we believe in Hashems ways including His cheshbon. Many things filled up the account such as a terrible spiritual situation, the Haskalah ripping through the yeshivos and affecting the boys, the children being brainwashed in secular public schools, and not learning basic Jewish knowledge and Torah. The people didnt know the account was full of sins. Therefore, they did not realize the severity of their situation and that a tremendous punishment could happen at any moment. Many values inform Rav Shachs opinions. The first value is the divinity of Torah as a proof of its legitimacy (Torat Hashem emet). Rav Shach says that a simple man can change his point of view because his view isnt dependent on anyone or anything. However, a gadol who is paskining something for the entire generation cannot change his point of view once he already stated a particular perspective. Furthermore, Hashem cannot change his point of view because He created the world with His words. If reality has been absolute for thousands of years, Hashem cannot suddenly switch what He said. The yud and the hey that make up Hashems name and refer to the two unique worlds He created. The yud refers to Olam Haba, the eternal world and the hey to Olam Hazeh, the present world as we know it. Hashem dictated his words of the Torah to Moshe, and he wrote them down, this is known as Torah Shebichtav. Since the origin of Torah is directly from G-d and Hashem doesnt change his words, we can be confident that Torah is entirely accurate.Rav Shachs second value is the truth of the words of Chazal as Torah Shebaal Peh. The words that Hashem passed down through Moshe also had an oral section given as the oral law called Torah Shebal Peah. The Tannaim and Amoraim later recorded these words which later became the Mishnah and Gemara. Rav Shach remarks that every single word, letter, vowel and crown on top of the letters written in the Torah has a significant and meaningful explanation. For example, the long neck of the lamad has a Kabbalistic meaning. However, simple people do not possess the unique wisdom to understand these subtleties. Rather, the Tannaim and Amoraim are the only individuals that can decipher the true meaning of these letters. They are able to provide deep explanations for the slightest deviation of spelling, seemingly extra words or the crowns on top of the letters. Chazal mention two important quotes from Torah Shebal Peah. The first is anyone who is angry all the aspects of hell rule over him (Shach 90). The second is anyone who breaks vessels out of his anger it will be considered in His (Hashem) eyes as if he served idols(Shach 90). These words arent arbitrary or superficial; however, they are complete and substantial. Rav Shachs values that the above statements are the words of Hashem in Torah Shebal Peah therefore, they must be true. Rav Shachs analysis states that when a person sins Hashem will exact punishment for his actions. A person who is a disbeliever in Torah Shebal Peah is an outright heretic. This idea is similar to what Chazal says about a haughty person, me (Hashem) and him (heretic) cannot live in one sphere (the world) (Shach 90). Unfortunately, in spite of these harsh words, we do not think about the content of our actions, and we dont take the time to delve into our inner desires and examine our deeds. Therefore we may not realize what is going on with us, if we have sinned or not. Hashem says that if you dont believe in reward and punishment, then you are a blatant heretic according to the rabbis. Rav Shach means a person who did something wrong will be punished. Rav Shach places value on the knowledge that Hashem is merciful, and He has a just accounting system. Someone could ask a question, doesnt the Torah state that there is punishment for sin, why dont I see the penalty? The answer is that Hashem is slow to get angry and collects sins one at a time. Meaning that Hashem has the characteristic of being slow to anger, but eventually over time accumulates what is his and will punish people who did wrong. Hashem has his account when and how much to collect, and he isnt forgiving and doesnt let it all go. Hashem accounts for everything. Sometimes the individual is avenged for his actions; sometimes the account is with the family, sometimes the generation is avenged. There will not be an illusion of relinquishment. Rav Shach states there is no cessation everything is accounted for Hashem is slow to anger and counts small actions like a cup of drops.Everyone was affected by the tragic murder of six million Jews. There wasnt a family left unaffected whether it happened to be parents, siblings, children, distant relatives, friends or neighbors. We should ask ourselves, why did this decree happen? Heaven forbid that Hashem is acting with cruelty, He is kind, full of mercy and favor. What did Hashem do this to us, it cannot be that He performed extreme judgment for free (just because)? Does a person like Hitler (may his name be erased) have the power to wipe out six million Jews? If we assume that the Holocaust was for no reason, then we lack in our emunah and bitachon, and involvement of Hashem in His unique creations (our lives). Rav Shachs message is that there is an accounting for all actions, we must believe that G-d is just, and therefore we can reconcile the Holocaust as a punishment (a tikun). In class, we learned about Rav Elchanan Wasserman who has a similar approach to Rav Shach. Both believed that the Haskalah and outside influences caused the Holocaust and that Hashem made a judgme nt when bringing the Holocaust. He differs from Rav Shach on his process of how the cause led to the Holocaust. Rav Elchanan Wasserman believes that Judaism should be taken in its correct, pure form. He thinks that mixed multitude, outside ideas, and approaches changed the legitimacy and efficiency of Torah, Judaism, and Mitzvot. He says that because Torah wasnt pure and was being watered down by the Haskalah and other European influences caused the Jews to sin. Hashem justly made the Holocaust happen to separate the Jews from secularism and other ideas mixed with Judaism. Rav Shach says that the Haskalah and outside influences caused the Jews to sin and overtime these sins accumulated a spiritual account. When the account was deemed full, then the Holocaust was allowed to happen as a divine punishment for exacting judgment. Later on in his work, Rav Shach mentions the cause of anti-semitism with an approach very similar to Rav Elchanans approach. They both agree that the assimilation of Torah with culture causes evil and that the push to separate us was masked as coming from the nations. Rav Shach says when Jews get close to European culture or the Haskalah, as a direct effect anti-semitism is increased in that location. Unfortunately, before the Holocaust, places like England and Germany had anti-semitism because the people there were strongly influenced by the Haskalah. Rav Shach then quotes the famous Beit Halevi, who says that Hashem made a clear distinction between the Jewish people and the nations. When a Jew wants to get close to other countries that will increase anti-semitism. Fortunately, I had the fantastic opportunity to recently hear a panel face-to-face between Rabbi Yisrael Meir Lau and Rabbi Lord Jonathan Sacks. Rabbi Lau spoke about how anti-semitism and assimilation are real problems today and will continue until Moshiach comes. Rabbi Sacks talked about hope and that we can combat the problem of assimilation with educating Jews. To defend a country you need an army, but to defend your identity you need education. Education is the ministry of defense (Sacks). In regard to anti-semitism, the victim cannot cure the crime by themselves. Hate that begins with Jews never ends with Jews (Sacks). Other people are also attacked because of the same hate. If it is not safe to be a Jew on the streets, then it is not safe to be European on the streets (also said in front of the European Union) (Sacks). He believes that getting all the allies on our side is extremely beneficial. Get other countries to realize it is also their problem as well. When somebody calls you a Jew, how do you view the term? Do you look at it as an insult or something that you are really proud of/a compliment? Anti-semitism is as much their problem as it is ours! We will fight and we will win! We should be proud to be jews and never give the enemies comfort that they intimidated us! (Sacks)I agree with Rav Shach, Rabbi Lord Sacks, and Rabbi Lau, we should be proud to be Jews, sending our children to Jewish day schools. We should be careful in our observation of Torah and mitzvot holding them closer to our heart! Using them as our spiritual protection, to stay mostly separate as Rav Shach said from the non-Jews. We must be watchful so we do not become too influenced by outside cultures and the complacency of galut. I feel that we have to strive for the ideal, to be living in Israel at the time of Moshiach, bu t balancing our practical lives as Jewish people in America. In conclusion, I think we need to follow the Torah and rely on Hashems protection. However, it is imperative to actively do our hishtadlut, and make allies for the Jewish people with other nations. Another way to proclaim we are Jewish proudly is to have public events for Jewish Holidays, like a kumzits for the State of Israel in Times Square. When we do not feel proud of our heritage, we will look to other cultures for inspiration, like the generation of the Holocaust. Since we have faith in Hashems cheshbon, we do not want our sins to bring about a horrific punishment in our future. The best prevention of another mass genocide is to recognize our history as a Jew, make it relevant to our lives and our childrens lives, and permeate our lives with the mitzvot.

Tuesday, December 3, 2019

The Eyes of the Skin Analysis Essay Sample free essay sample

This book was written by Juhani Pallasmaa with respect to ‘Polemics’ . on issues that were portion of the architecture discourse of the clip. i. e. 1995. It is besides an extending of thoughts expressed in an essay entitled â€Å"Architecture of the seven senses† published in 1994. As suggested by the rubric. this piece of literature efforts to foreground the importance of centripetal experience in architecture. It is so a response to what the writer footings as ‘ocularcentrism’ of Modern Architecture. Ocularcentrism is the act of prioritising ocular stimulations to all other centripetal stimulations available to a human perceptual experience. He quotes celebrated German poet. Goethe. in his defence. â€Å"the custodies want to see. the eyes want to caress† Firstly. Pallasma discusses at length the centripetal want and distance caused by ocularcentrism ; and how this keeps architecture from being every bit wholesome as it is capable of. This is so. as architecture today does non Pallasmaa argues. We will write a custom essay sample on The Eyes of the Skin Analysis Essay Sample or any similar topic specifically for you Do Not WasteYour Time HIRE WRITER Only 13.90 / page take into history. peripheral vision. shifting of focal point. memory. and imaginativeness. It â€Å"has housed the mind and the oculus. but left the organic structure and other senses. every bit good as our memories. imaginativeness. dreams homeless† . Second. he points out how ocularcentrism has developed into a cultural norm ; therefore the oculus can itself be biased. â€Å"nihilistic or narcisstic† . Therefore can be distanced and detached from the other senses. for case. touch. therefore leting no emotional duologue. To back up his theory. he quotes illustrations of the kineticss of the sense of touch in heightened emotional provinces wherein. so â€Å"the custodies want to see† Third. the writer compares the image of a modern metropolis to that of what he footings a â€Å"haptic city† – a metropolis which can be touched ; contrary to the distant. exterior orientated modern metropolis. Furthermore. he discusses how since antiquity. adult male has been the step of non merely his architecture. all his activities every bit good. To back up this statement Pallasmaa quotes cases of the caryatid tribunal and the experience of runing in prehistoric culture. where adult male becomes the cardinal point of be ginning of everything. He emphasises on the presence of and an enveloping satisfaction through multi stimulations in nature ; giving an illustration of a trek through a wood. and the feeling of being within the infinite of a glade invoked by peripheral vision. complete with the crunching of foliages under the pess and sap smell that surrounds us through the trek. Building on this get downing point Pallasmaa speaks of the importance of the shadow in making visible radiation. He suggests that it is the niceties of shadows and the dimly lit which really tickle the senses. and that Modern Architecture seems to miss this grasp of the shadow. Arguing consistently he takes the reader through all the senses in inquiry ; viz. . hearing. odor. touch and gustatory sensation. For each sense he quotes an illustration from nature. therefore depicting how it is an recognition of all senses that completes a infinite. He talks of registering the velocity of air current through hearing and observing the temperature of the same through touch. Furthermore. he links odor with memory and adds that odor is by far one of the strongest mediums that add to the memory of an experience. He so brings into his statement the presence of adult male by discoursing. clip and the sense of proportion – as adult male is designed to comprehend in comparing to his ego – and action where adult male measures through traveling within a infinite. In decision. Pallasmaa discusses th e importance of these senses in the design procedure. He talks of the distance created between the architecture and the design due to mechanisation of the procedure. This portion of the statement need non be dwelt on for long as the old text makes clear all the concluding behind this. one can grok in applicability to each sense. the importance of ‘feeling’ it during the design procedure. The text though really interesting. is a spot cumbrous. and requires frequent mention to the lexicon. The statement flows really clearly and consistently and foreground the disadvantages of ocularcentrism in comparing with each sense and how that made the Modern – cold and distant from adult male. The full statement is really good illustrated with both citations. artworks and experiential mention – which add to and are really pertinent to the statement. The writer saturates the text with illustrations. This makes the argument really convincing and becomes intimate with reader. The writer besides makes psychological and physiological mentions doing this statement scientifically sound and non merely something rooted in poesy. One of the major textual mentions that are made. are to Halls book – The Hidden Dimension. The writer laments that designers today have forgotten it- and hence his written response to this ignorance. The most appealing facet of this text is that it can be understood by a laic individual. due to the fact that all illustrations are such which be long to the life of all and do non utilize edifices to exemplify hence non restricting them to designers. Qurat-ul-Ain Shamim Bibliography Pallasmaa. Juhani ( 2005 ) The Eyes Of the Skin – Architecture and the Senses. Great Britain ; Wiley Academy Pallasmaa. Juhani ( 1994 ) Architecture of the seven senses. Questions of Perception ; Architecture + Urbanism Press Goethe. Wolfgang ( 1790-1795 ) Romische Elegien V Hall. Edward T. ( 1966 ) The Hidden Dimension. United States Of America ; Doubleday Publishers [ 1 ] . Pallasmaa. Juhani ( 1994 ) Architecture of the seven senses. Questions of Perception ; Architecture + Urbanism Press [ 2 ] . Goethe. Wolfgang ( 1790-1795 ) Romische Elegien V[ 3 ] . Pallasmaa. Juhani ( 2005 ) The Eyes Of the Skin – Architecture and the Senses. Great Britain ; Wiley Academy [ 4 ] . Hall. Edward T. ( 1966 ) The Hidden Dimension. United States Of America ; Doubleday Publishers